Why LyC photons?

- Photo-ionization heating
- Radiation pressure due to UV, IR, Lya etc.
- Low-density channels for supernova explosions

Effects of LyC escape on the properties of ISM

ISM properties

- Scale-height
- Lyman alpha
- Emission lines

<section-header>

RHD sim of a dwarf-sized galaxy Kimm+(18)

Effects of LyC escape on the properties of ISM

Offset in BPT diagram at high z

Katz, Kimm+(19, submitted)

Strong [OIII] and [NII] at high-z may be due to strong radiation + harder spectrum due to binaries

Why LyC photons? Reionization

mini-halo scales (Kimm+17) (M_{DMH}~10⁶-10⁸M_{sun})

t--> Large scales (Ocvirk, Ahn+18) ~100 Mpc

Why LyC photons? Suppression of gas cooling

No reionization

No Reionization Dark Matter Dark Matter

Gas structures

DM structures

Gas structures

Inhomogeneous reionization

SPHINX simulations

box size: 10 cMpc max res: 10 pc (Katz, Kimm+ in prep)

Why LyC photons? Summary

- Disruption of star forming clumps
- Thermal properties of primordial and metallic species
- Suppression of gas cooling on dwarf-sized haloes
- etc..

By measuring escape fractions of LyC photons from galaxies: Covering fraction of optically thin gas (log N_{HI}<17)

but detailed information about structures and kinematics is still lacking -> Lyman alpha

Lyman alpha is sensitive to gas kinematics

Talks by K. Seon+H. Song, K. Ahn+H. Kim..

Luminous compact galaxies

- Low-mass (~109M_{sun})
- Low-metallicity (~0.1 Zsun)
- Compact (~I kpc)
- SFR (~50 M_{sun}/yr)

NUV image of J0925+1403 at z~0.3 (HST; Izotov+15)

Luminous compact galaxies

Q: Can numerical simulations reproduce this trend?

Cloud simulations with radiation+SN

62pc

t= 5.0 myr

RAMSES-RT (Teyssier02; Rosdahl+15)

- Photo-ionisation heating
- Direct radiation pressure
- IR pressure
- Type II SN explosions
- Non-eq. photo-chemistry
- Resolution: 0.2 pc

log T 5 6 7

Cloud simulations with radiation+SN

- L-weighted <f_{esc,LyC}> on cloud scales is ~ 5 50 %
- Even with turbulent structures, f_{esc,LyC} does not fluctuate wildly (f_{esc,LyC} reflects the evolutionary phase of star formation episodes)
- $< f_{esc,LyC} > increases with Z_{gas} \downarrow$, SFE \uparrow , M_{cloud} \downarrow , and by making SEDs harder

RASCAS: a (new) Monte-Carlo RT code

RAdiation SCattering in Astrophysical Simulations :

Michel-Dansac, Blaizot, Garel, Verhamme, Kimm, Trebitsch (19, submitted)

• Efficient domain decomposition for MPI

- Tailored for AMR simulations
- Not only Lya, but also other resonant lines (Si II, Mg II, Fe II, etc..)

Lya from stars or gas?

Assumption that Lya arises from stellar components is likely to under-estimate the number of scattering

Escape of LyC vs LyA

Clumpy ISM

Turbulent clouds

Cloud simulations with radiation+SN

Kimm+(19, submitted)

Lya spectrum can be broad on cloud scales!

Asymmetry of Lya

Separation of blue and red peak

Isolated disk galaxies

Gas shattering and foggy CGM

Sparre+(19); McCourt+(18)

Bigger clouds easily fragment into smaller pieces and survive longer!

$$\ell_{\text{cloudlet}} \sim \min\left(c_{\text{s}}t_{\text{cool}}\right) \sim (0.1 \,\text{pc})\left(\frac{n}{\text{cm}^{-3}}\right)^{-1},$$

Summary

LyC - covering fractions of N_{HI}<10¹⁷ cm² LyA - kinematic information of neutral hydrogen

LyC-LyA gives us a unique opportunity to learn about kinematic properties of starforming galaxies

-> foggy CGM?